
OS-level Power Minimization Under Tight
Performance Constraints in General Purpose

Systems
Raid Ayoub∗, Umit Ogras†, Eugene Gorbatov†, Yanqin Jin∗, Timothy Kam†, Paul Diefenbaugh† and Tajana Rosing∗

∗Department of Computer Science and Engineering
University of California at San Diego, La Jolla, CA 92093-0404

{rayoub, y7jin}@cs.ucsd.edu, tajana@ucsd.edu
†Intel Corporation, Hillsboro, OR 97124

{umit.y.ogras, eugene.gorbatov, timothy.kam, paul.s.diefenbaugh}@intel.com

Abstract—We propose a new DVFS algorithm for enterprise
systems that elevates performance as a first order control
parameter and manages frequency and voltage as a function of
performance requirements. We implement our algorithm on real
Intel Westmere platform in Linux and demonstrate its abilit y to
reduce the standard deviation from target performance by more
than 90% over state of the art policies while reducing average
power by 17%.

Index Terms—Power, Performance, DVFS, Operating system,
Multiprocessor.

I. I NTRODUCTION

Scaling down in technology coupled with the increasing
demand of computationally intensive applications has led to
a wide use of multi-core CPUs in server systems. Multiple
CPU packages have been deployed in modern systems to
further increase computational capacity [3]. However, running
this computational infrastructure increases system powercon-
sumption. At the same time, high CPU power causes thermal
hot spots which require cooling subsystems that can consume
significant energy [5]. Therefore, operational power consumed
for system execution and cooling has become a big concern.

In general, processor power can be broken down into
dynamic and static power where static component is around
20%-40% [6]. Dynamic power is a function of clock frequency
and voltage while static power is a function of the number of
active components and temperature. In recent years, system
designers have introduced CPU power management techniques
to improve energy efficiency and thermals. Dynamic voltage
and frequency scaling (DVFS) has been a mainstay of server
power management for several product generations now [3],
[4]. DVFS lowers processor dynamic power by scaling down
its voltage and frequency thus reducing power dissipation in
both CPU and cooling subsystem.

DVFS control algorithms found in todays production sys-
tems rely on heuristics that can inadvertently decrease system
performance while trying to minimize processor power con-
sumption. Both Linux and Windows, for example, implement
a DVFS policy that attempts to keep processor utilization at
around 90%, progressively decreasing frequency whenever uti-
lization drops below this threshold and increasing when above
[18]. Although this policy keeps system throughput constant,
it may negatively impact latency sensitive applications. In
addition, and perhaps more importantly, it offers no strong
performance guarantees. In fact, identifying periods during
which voltage and performance can be safely reduced is an
active area of research [12].

Fig. 1. Performance reduction using ondemand

Server performance remains a critical component of data
center operations. Many server workloads are deployed with
Service Level Agreements (SLAs) that capture workload
performance requirements. Meeting these SLA requirements
and providing certain level of performance guarantees lies
in the heart of robust datacenter operation. The goal for
power management in future generation servers will be to
provide energy efficient performance rather than simply energy
efficiency [2].

Figure 1 shows performance loss ofondemand governor, a
state of the art DVFS Linux policy [2], for a representative
period of executing a web server benchmark, SpecWeb2009
[10], with 2000 sessions. Each point in the graph represents
average performance loss over a sliding window of 100ms. The
results clearly show that Linux DVFS policy cannot constrain
performance loss. In addition, performance variations from
frequency scaling are very high further destabilizing system
operation and user experience. Note that this behavior not only
deteriorates workload quality of service (QoS) but may also
be unacceptable for latency sensitive applications.

A number of DVFS techniques have been proposed for real-
time applications that have hard-performance constraints[11],
[19], [17]. A general idea behind this class of techniques is
to pass application-level deadline information to the operating
system (OS) to guide its DVFS decisions. However, using real-
time mechanisms to address DVFS performance issues for data
center workloads is problematic. First, most server applications
and system software don’t have the necessary infrastructure for
deadline based scheduling and power management. Second,
performance guarantees found in enterprise SLAs are statisti-
cal leading to unnecessary over-provisioning, complexityand
less energy savings inherent in hard-real time systems with
deterministic guarantees.

This paper proposes a new DVFS mechanism that makes
performance a first order control parameter. Rather than re-
quiring applications to specify deadlines, our approach intro-

duces a new constraint, called performance target, expressed
as a fraction of maximum system performance (e.g. 95%),
as measured by the number of Instructions executed Per
Second (IPS). We design a new DVFS algorithm that con-
trols processor operating frequency and voltage based on this
constraint while minimizing power and ensuring performance
stability. Similar to prior work, we address typical enterprise
applications that require soft guarantees [13], [14]. In contrast
to prior work we provide performance guarantees using closed
loop control.

The main benefit of our approach is in providing a more
general solution for the soft performance guarantee problem
while ensuring stability and efficiency of DVFS. To this end,
we design a formal closed loop controller that dynamically
changes operating frequency and voltage to meet a desired
performance target. Our control framework is not limited to
a single core; it is capable of managing multiple cores as
well as multiple CPU packages. To evaluate our technique
we implement new DVFS control algorithm in the Linux
kernel and conduct detailed analysis on the latest generation
server system. The results presented in the paper show that
our approach has the ability to reduce the standard deviation
from target performance by more than 90% over state of the
art policies while reducing average power by 17%.

II. RELATED WORK

DVFS techniques can be broadly classified into multiple
categories. The first class covers polices that mange power
dissipation without guaranteeing QoS [7], [8], [18]. Modern
Linux kernel usesondemand policy for managing DVFS
[18]. The ondemand algorithm periodically calculates the CPU
utilization. If the utilization is above a certain threshold, the
ondemand set the frequency to the highest value. Alternatively,
the next frequency,fnext, would be set to a value that equals
to current frequency,fcur, multiply by the utilization,Ucur,
(fnext = fcur ∗ Ucur). The main problem with this policy is
that it cannot constraint performance to given bounds.

The second class of DVFS techniques are designed for real-
time applications that have hard deadlines [11], [19], [17]. In
[11], the authors use software feedback loop mechanisms to
save energy. The deadline for each time slot is provided to the
OS. The OS calculates the frequency based on the current slack
and the expected worst case execution time. The technique in
[11] uses static timing analysis to find the execution time of
the program segments. This static information is exposed to
the OS to determine the frequency of the execution at run time
to meet the desired deadlines. In [17], the authors address the
issue of how to assign frequencies to a given set of tasks
so they can meet their deadlines. Although these techniques
are effective in meeting the desired performance in real-time
applications, they are not so effective for soft deadlines due
to their over provisioning of the resources.

The third category of DVFS techniques concern the non
real-time applications that have soft performance constraints
[14], [13]. In [13], the authors suggest technique for using
DVFS to meet soft performance requirements for multimedia
applications. These techniques use feedback control to manage
DVFS. However, they are applicable to particular applications.

Our contribution can be summarized as: (1) We make
performance SLAs first order parameter and allow software to
specify its performance targets. (2) Rather than driving DVFS
to reduce power only we drive DVFS to meet performance
targets while minimizing power. (3) We show that our ap-
proach is able to meet performance targets when compared to

Platform

Control
P−state

Scalability factor,
request
P−state

OSPM

User /Application

Instructions retired

Performance target set

Fig. 2. Overview of our DVFS management

current DVFS approaches. (4) We present detailed evaluation
and analysis conducted on a real system.

III. D ESIGN OVERVIEW

Our DVFS (p-states) management is implemented at the
operating system level as a kernel module. Figure 2 describes
our approach. Our framework in general allows the appli-
cations to specify their respective performance target. The
target performance is expressed as a fraction of maximum
performance (e.g. 95%), as measured in terms of IPS. The
user or the application set requests the target performanceand
passes this information to the operating system power manager
(OSPM) where the target set can be easily modified at any
point in time. Our solution is general which allows each core
to run at different performance target when there is a support
for changing DVFS per core. We developed a performance
model that is based on frequency scalability which allows
us to determine the target frequency of the individual thread.
It accounts for the interference effect from other threads on
the shared resources, e.g. off-core caches and memory. This
model is embedded within a state-space framework which
models a slack in the form of execution time to account for
the limitations in frequency setting and run time variations
in scalability factor. Our state-space model also handles the
cases when a number of cores share a single DVFS due to
hardware restrictions. The limitation is that we can assigna
maximum of one performance target to the cores that share
a single DVFS setting. In case the system supports multiple
CPU sockets, then each socket can have different performance
targets.

This set of target performance is the input to our Multi-
Input Multi-Out (MIMO) feedback control algorithm that
adjusts the frequency and voltage settings of the cores in
a way that ensures the target performance level is satisfied.
The proposed controller estimates two parameters (per core)
from the platform using hardware performance counters. One
is a scalability factor and the other is instructions retired.
Scalability factor determines the portion of the executiontime
that is scalable with frequency. The controller makes DVFS
decisions on a regular basis so that it can respond to run
time changes in workload behavior. The controller sampling
period is in the order of tens of milliseconds. We show that
the overhead of this technique is negligible since the time for
controller’s computation time and DVFS switching is in the
range of microseconds.

IV. DVFS CONTROL METHODOLOGY

A. Performance model

In this section we develop the relations between OS level
performance and clock frequency. When a thread is executing
the thread is inactive state, and when it is waiting in the task
queue of the operating system it is inidle state. During the
active mode the thread can be either executing or stalling while

waiting for some on-core or off-core resource. In general,
the latency of on-core stalls scales with frequency while the
latency of off-core stalls does not. This indicates that theactive
time,Tact period of time when the thread is in active state, can
be broken into frequency scalable and unscalable segments.
We define thescalability factor, SF , as the ratio between
scalable time,Tscalable, to active time as:

SF =
Tscalable

Tact

(1)

Suppose frequency changes fromf1 to f2. As a result, active
time changes fromTact(f1) to Tact(f2):

Tact(f2) = Tact(f1) +∆Tact (2)

∆Tact = SFTact(f1)(
f1

f2
− 1) (3)

where∆Tact
represents the change in scalable time due to

the change in frequency. We do not consider the unscalable
time since it does not change with frequency.

To measure performance we use the commonly used metric
which is the number of instructions,NI , executed per second
IPS = NI

Tact
. This metric is applicable to single and multiple

threads. For multiple threads it is equivalent to throughput.
The upper bound for the instructions execution rate,IPSmax,
can be determined by setting the clock frequency of the active
cores to the highest. The objective is to run a given set of jobs
at IPS that is fraction of the highest one as follows:

IPSref = βIPSmax (4)

whereβ is performance fraction factor (0 to 1) andIPSref

is the target IPS. The value ofβ is the target performance ratio.
It is provided by the user or application and can be easily
changed (see Figure 2). The lower bound forβ is determined
based on the minimum and maximum frequencies supported
by the CPU (fmin, fmax) and average value of scalability
factor S̄F . The value ofβmin equals to1+ S̄F (

fmin

fmax
−1). We

use theIPSref in our approach as a reference input for the
DVFS algorithm. The value ofIPSref may vary at run time
depending on the jobs run time profile. CalculatingIPSref

reference become straightforward if we know the value of
IPSmax. The challenge is how to extrapolate the value of
IPSmax when the cores execute at arbitrary clock frequencies.
To relate the targetIPS of each task toIPSmax, we use
Equation (3) and obtain:

IPSref = IPSmax

1

1 + SF (
fmax

fref
− 1)

(5)

Finally, using (4) and (5), the target frequency can be
computed as follows:

fref =
fmaxSF

1
β
+ (SF − 1)

(6)

B. State-space slack model
Our performance model given in (3) shows that a slack in

the form of execution time,∆Tact
, would occur if the clock

frequency is set to value that is different from the target one.
The convergence of the performance to the target depends
on the slack’s convergence to zero. Before we address the
convergence problem we need to develop a model for the
slack. We start with a simple case where we have a single core
executing a single thread. Ideally, at the end of each control
interval,k, we need to calculate a new target frequency,fref ,
and then set the operating frequency to that value to meet
the desired QoS. However, deviation from the desired QoS

may occur due to errors in scalability factor or requesting
unavailable frequencies. The source of errors in scalability
factor come from the fact that we need to rely on scalability
factor prediction for the next period (period betweenk and
k+1). In this work, we assume that the next value of scalability
factor equals to the current one that is already measured by
performance counters. The frequency selection related errors
occur because only limited set of frequencies are exposed to
the operating system. Such deviations can be modeled as a
slack in execution time which can be either positive (frequency
is lower than the target) or negative (frequency is higher
than the target). The interesting feature of the slack is that
it is accumulative and can be modeled naturally in a state-
space form. Modeling the slack problem in state-space form
is desirable since it allow us to use the robust formal methods
in state-space control.

s(k + 1) = s(k) + ∆s

= s(k) +
SF (k)Tact

fref (k)
(f(k)− fref (k))

= s(k) + γ(k)u(k) (7)

where s(k) represents the slack accumulated untilk’th
period and∆s(k) is the slack for the period betweenk and
k + 1, which is computed using (3). The parameterTact

represents the time duration of the active state for the period
betweenk andk + 1 andu(k) = f(k)− fref (k) . The value
of ∆s(k) can be either zero, positive or negative quantity. For
example, the value of∆s(k) is zero if f(k) is set tofref .

Now we extend our modeling to multiple cores where each
core executes a job. This means that we need to have a control
over the slack of the active cores. Let’s first assume the number
of cores isN . We define the state of the slack with a vector
of N states, at timek, as:S(k) = [s1(k), s2(k), ..., sN (k)]T .
In case there is a DVFS support per core, the state-space
formulation ofS(k) can be written as:

S(k + 1) = S(k) + [Γ]N×N [U(k)]N×1 (8)

The [Γ]N×N matrix is a diagonal matrix where the diagonal
element,Γii corresponds toγ(k) of the ith slack. The matrix
[U(k)]N×1 is the control input where theith entry represents
fi(k)− frefi(k).

Controllability of the state space model in (8):
Using the analysis given in [15], [16], one can show that the
system given in (8) is controllable under the condition where
each core has its own DVFS. In practice, hardware restrictions
may force multiple cores to share the same clock frequency,
an issue that makes the system more difficult to control. This
means that we need to reduce the number of states in the
slack space to be equal to the number of controllable clock
frequencies.

C. State space reduction

In order to reduce the number of slack states while meeting
the required performance SLAs we utilize the superposition
property in the performance relation (4). Let’s start first with
writing the general formulas for theIPSref and IPSmax

when there areN cores each is executing a task, that is:
IPSref =

∑N

i=1 IPSrefi and IPSmax =
∑N

i=1 IPSmaxi

Next, we need to incorporate the slack variables in the perfor-
mance model. To do so, we rewrite the performance equation
(4) in terms ofabsolute number of instructions executed as
follows:

N∑

i=1

IPSrefi(Tact + si) = β

N∑

i=1

IPSmaxi
Tact (9)

The right side of the equation counts the target number of
committed instructions over the period of time,Tact. In ideal
case when all slack equal to zero, the right side of this equation
should equal to

∑N

i=1 IPSrefiTact. We include the effect of
slack,si, by adding it to the execution periodTact as shown
on the left side of the above equation. This means that if
the slack of a particular core is positive then we execute more
instructions than the case of zero slack and vice versa. We note
that no slack is included in the right side of the equation since
IPSmaxi

represents the case when all cores execute at the
highest clock frequency. Next, we need to find the condition
that needs to hold for the slack values in order to meet the
desired performance. To do so, we first rewrite this equation
to separate the slack as follows:

N∑

i=1

IPSrefiTact +
N∑

i=1

siIPSrefi = β

N∑

i=1

IPSmaxi
Tact (10)

To meet the QoS condition, the second sum in the left side
of this equation,

∑N

i=1 siIPSrefi , has to be equal to zero. To
generalize this, we can state that each subset of cores,g, in the
CPU package that share a single clock frequency, must satisfy
the following condition in order to meet the target performance
SLAs: ∑

i∈g

siIPSrefi = 0 (11)

Using equation (11) and (7), the state-space formulation for
the instruction count slack for a subset of cores that shares
a single clock frequency can be reduced to a single state as
follows:

sI(k + 1) = sI(k) + f(k)
∑

i∈g

λi(k)−
∑

i∈g

λi(k)frefi(k)

= sI(k) + f(k)Λ−Θ (12)

where f(k) is the input clock frequency,sI(k) is the
slack in number of instruction execution,g is the set of
cores that shares same frequency and sameβ, andλi(k) =

IPSrefi(k)
SFi

(k)Tact(k)

frefi (k)
. The value ofIPSrefi(k) can be

computed as follows:
IPSrefi(k) = IPSi(k)

1

1 + SFi
(f(k)
frefi

(k)
− 1)

(13)

The value offrefi is computed using (6) which is de-
termined based onSFi

and the desiredβi. The formulation
given in (12) shows that it is possible to merge the slack
states of a group of cores into a single state that is controlled
by a single frequencyf(k). This indicates that it is possible
to make the number of states in the slack vector equals
to the number of controllable frequencies, hence the system
can be fully controllable. Let us define the state vector with
M states as,SI(k) = [sI1(k), sI2 (k), ..., sIM (k)]T . The state-
space formulation ofSI(k) can be written as:

SI(k + 1) = SI(k) + [A]M×M [F (k)]M×1 − [B]M×1 (14)

where[F (k)]M×1 is the vector of input clock frequencies,
[A]M×M is a diagonal matrix where the elementAii corre-
sponds to the value ofΛ in the sIi . For the vectorB, theBi

element represents the value ofΘ in the sIi . Since[A]M×M

is a diagonal matrix, we can treat each state independently
an issue that simplifies the controller design. In the following

section we focus on the design of the state-space controllerto
be used for adjusting the input frequency in away that uses all
of the available slack while ensuring stability.

D. State-Space controller

In this section we address the design of a feedback con-
troller that dynamically manages the controllable frequencies
to achieves the desired performance constraints. The relation
(14) shows that the individual slack variables,sIi , that belong
to the set of cores which share the same clock frequency
can be controlled independently, an issue that simplifies the
controller design. The objective of the controller is to converge
the slack variable to zero. We achieve that by using the control
law which is the linear feedback of states under control. The
instruction slack equation given in (12) has the termΘ which
is not controllable by the input frequency. We resolve that
through simple algebraic manipulation as shown below:

Λifi(k)−Θi = −GiΛisIi(k)

fi(k) = −GisIi(k) +
Θi

Λi

(15)

whereGi is the state feedback gain of theith slack and
fi(k) is the frequency setting that is required to meet our
objectives. Next, we need to find the value ofGi that will
place the eigenvalue of the closed loop system within the unit
circle to converge the slack to zero. To calculate the desired
gain we need to obtain the characteristic equation of the
system which has to be inz-domain [15]. The characteristic
equation of this system is|z − 1 + ΛiGi| = 0. Using the
characteristic equation, we can calculate the feedback gain
as,Gi = 1−z

Λi
, where1 > z ≥ 0. The controller’s transient

time constant,τ , is another important metric that needs to
be calculated. The controller represents a simple first order
system. Using first order system analysis, the transient time
of the controller can be computed as,τ = −Ts

ln(1−ΛiGi)
, where

Ts is the controlling interval. The controller response speed
depends on the location of eigenvalue andTs. In general,
the response speed increases as the value of the eigenvalues
become closer to the origin of the unit circle or the value
of Ts is reduced. However, the changes in the input clock
frequency are expected to increase with the reduction in the
response time.

Power reduction: The controller delivers power reduction
when the value ofβ < 1.0. This is because the controller
reduce the frequency to what is just needed to meet the desired
performance target. The controller ensure minimal frequency
since it incorporates the scalability factor information in its
performance model which allows it to reduce the frequency
when the application scalability factor is below one, thus
minimizing the power consumption. The power reduction
ratio is normally higher than1 − β and it increases inversely
to the scalability factor.

Overhead: The computational overhead at each controlling
tick involves calculating the new frequency using (15) and
updating the slack states (12). These ordinary computations
can be done in no more than few microseconds. The overhead
of DVFS switching is also in the range of microseconds [1].
On the other hand, the period between consecutive controlling
ticks is in the range of tens of milliseconds. This indicatesthat
the overhead of our controlling mechanism is negligible.

TABLE I
SPEC2K BENCHMARKS CHARACTERISTICS

Benchmark IPC Characteristics
bzip2 1.30 CPU bound
perl 2.05 CPU bound
gcc 1.38 CPU bound
mcf 0.31 Memory bound

equake 0.65 Memory bound
swim 0.57 Memory bound

V. EVALUATION
A. Methodology

We evaluate our approach using a state of the art test
bed, a 32nm Intel hexa-core dual socket Westmere Xeon
with a total DRAM/DDR3 memory of 12GB. Our Wsetmere
processor supports 6 operating frequencies (1.6, 1.733, 1.867,
2.0, 2.133, 2.267 GHz). The hardware design of Westmere
processor allows only a single frequency for all cores in a
socket at any point in time. To accommodate this restriction
we use our state-reduction method to get a single slack for
an entire set of cores in the CPU socket. We implemented
our state-space controller in latest Linux kernel (2.6.33.2) in
place of theondemand policy for managing the p-states. We
use the CPU’s hardware performance counters to estimate the
scalability factor and IPS. To measure these metrics we needto
determine the scalable time active time and number of retired
instructions. We use one counter for each of these metrics
(e.g. unhalted core cycles counter for measuring the active
time. We use an eigenvalue of 0.1 for the controller gain so it
can converge in about one scheduling tick or so. The sampling
interval of our controller is set to 20ms. Please refer to section
IV.D for discussion on the controller sensitivity to the values
of eigenvalue and sampling interval. We use this setup and
evaluate our controller by executing batch class (throughput
critical) workloads. For a more comprehensive analysis of our
technique, we evaluate it by executing service class workloads
(e.g. web servers). Running service class workloads requires
cluster of multiple physical machines. Owing the limited
availability of physical machines, we simulated our controller
and used real-life traces from actual measurements in the
simulations.

We use representative benchmarks from the Spec2K suite
for the batch class workloads (see Table I)[9]. A set of
benchmarks with various levels of CPU intensity are selected
to emulate real life applications. We run each benchmark in
the work set till its completion. For service class workloads
we use SpecWeb benchmarks that are used commonly for web
server performance evaluation [10].

We compare our technique against the defaultondemand
policy in Linux (described in section II). However, for batch
class of jobs with high utilization theondemnad would set
the frequency merely to maximum, hence it cannot constrain
performance to given bounds. We also evaluate our method
against a performance aware policy that is suitable for high
utilization jobs, Fixed Frequency Performance Aware, FFPA,
that sets the frequency,f , to a value that is based on the given
performance target as,f = βfmax. The frequency is rounded
up to the closest value available to prevent performance
violations.

B. Evaluation
Figure 3 shows the robustness of our controller to meet

the required SLAs performance. We run workloads on a
single CPU socket that span from CPU intensive to mem-
ory intensive with single as well as multiple threads. We
select representative performance targets to show that our

perl gcc mcf bzip2 perl+gcc perl+mcf
perl+bzip2+equake2perl+2mcf

2bzip2+2perl+swim AVG30

40

50

60

70

80

90

100

Pe
rf

or
m

an
ce

 (%
)

Ondemand
FFPA, target:90%
FFPA, target:80%
Our policy, target:90%
Our policy, target:80%

Fig. 3. Performance SLAs with a single CPU socket

bzip2:mcf
perl+bzip2:2mcf

2gcc:mcf+perl
3perl+equake:bzip2+mcf

3bzip2+mcf:2gcc+mcf
3perl+mcf:3perl+mcf

perl+bzip2+gcc:2mcf AVG30

40

50

60

70

80

90

100

Pe
rf

or
m

an
ce

 (%
)

ondemand, CPU 0,1
FFPA, target:95%, CPU 0
FFPA, target:80%, CPU 1
Our policy, target:95%, CPU 0
Our policy, target:80%, CPU 1

Fig. 4. Performance SLAs with dual CPU sockets

controller is not limited to a particular value. The results
clearly show that our controller is capable of meeting the
desired objectives. In general, controlling the p-states when
running multiple threads is more challenging compared to
single thread execution because of interferences in the last
level cache. However, our controller performs quite well across
these varied cases. For instance, the results obtained for the
case ofperl (cpu intensive) and{2perl+2mcf} (mcf is memory
intensive) are equally good even though the latter run has a
substantial increase in the number of last level cache conflicts.
The results also show that our policy outperforms FFPA
since FFPA cannot exploit the workload dynamics in terms
of frequency scalings. For the case of default Linux policy,
ondemand, the results show it is ineffective in controlling the
performance of this class of high utilization jobs as it would
merely increase the frequency to maximum. To accurately
evaluate our technique we calculated the standard deviation
from performance target using the results in Figure 3. The
reduction in average standard deviation over the FFPA and
ondemand policies is as high as 72% and 91% respectively.

In Figure 4 we show that the capability of our controller to
meet the target SLAs is not limited to a single CPU package.
In this experiment we execute workload on the two CPU
sockets in the system (CPU0, CPU1), where the workload
includes a mix of CPU and memory intensive applications.
We set the performance targets of the workloads of the two
CPU sockets to be different, (95% and 80%). We use the
notation (:) to separate the workload of the two sockets.
The results show that our controller is able to meet the
performance target in all cases and outperform both FFPA
andondemand. Our controller is able to perform equally well
when there is a single thread is executing in each socket,
{bzip2:mcf}, as well as when there is multiple threads in
each one,{perl+bzip2+gcc:2mcf}. We also calculated the
reduction in average standard deviation over the FFPA and
ondemand; it reaches, 80% and 92% respectively.

We will now discuss the performance of our controller
compared to theondemand policy in managing the p-states for
service class workloads (using SpecWeb traces). The results
of applyingondemand policy are shown in our earlier Figure
1 where the performances are averaged over a sliding window
of 100ms. The results show that theondemand policy can
cause large variations in performance which can lead to

Fig. 5. Running SpecWeb with our controller

20.0 20.5 21.0 21.5 22.0 22.50.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

IPS
/IP

S_
ma

x

20.0 20.5 21.0 21.5 22.0 22.50.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

SF

20.0 20.5 21.0 21.5 22.0 22.5
time (sec)

1.85
1.90
1.95
2.00
2.05
2.10
2.15

Fre
qu

en
cy

 (G
Hz

)

f_cur
f_ref

Fig. 6. Controller behavior with executing bzip2

performance violations. To compare it with our policy we
use the performance hit from theondemand policy and set
a corresponding desired performance level for our controller.
Figure 5 shows the results of applying our policy. The results
show that the performance variation is reduced by 92% which
is significant.

Next we give results pertaining to the run time behavior
of our controller. In these experiments, we set the desired
performance to 90%. Figure 6 shows results of executing
a single thread ofbzip2 on Westmere processor. The top
portion of the graph shows how the ratio between current
and the maximum IPS changes over time. The middle part
of the graph depicts the scalability factor while the bottom
portion illustrates the current and target frequencies. The
results clearly show that the controller is able to meet the target
performance in spite of large variations in scalability factor.
The bottom part shows that the frequency assignment may
have some fluctuation between the two adjacent frequencies
(2GHz and 2.13GHz). These fluctuations occur due to the lack
of enough frequencies to cover the range that is required by
the controller. In spite of this limitation in the hardware,out
controller is able to meet the target performance.

The other important feature of our technique is its capability
to deliver CPU power reduction while ensuring performance
guarantee. Figure 7 shows the power reduction comparing
ondemand and FFPA and our technique for running workload
on two sockets where both sockets have the same performance
target. We study the savings over various values of perfor-
mance targets. The power reduction with using our controller
is the highest when compared toondemand policy sinceonde-
mand keeps the frequency at maximum. The power reduction
is expected to increases with the reduction in performance
target. Our technique also outperforms FFPA policy in most
cases. The savings in the case of performance target being
94% come primarily from utilizing frequency scalability in
the application as there is no rounding up in the frequency
setting of FFPA (rounding up frequency causes extra power
dissipation). The savings for memory intensive workload e.g.
({swim:swim+mcf}) is higher than the case of cpu intensive
ones (e.g.{bzip2:bzip2}) since memory intensive applications
exhibit lower frequency scaling. The savings against FFPA in-
crease further for the cases of performance targets of 90% and

2mcf:2mcf equake:2perl
mcf+gcc:mcf+gccmcf:swim bzip2:bzip2 gcc:swim mcf:mcf

swim:swim+mcf AVG0

5

10

15

20

25

Po
w

er
 re

du
ct

io
n

(%
)

Basline, ondemand:85%
Baseline, FFPA:85%

Basline, ondemand:90%
Basline, FFPA:90%

Basline, ondemand:94%
Basline, FFPA:94%

Fig. 7. CPU power reduction with our controller

85% since their target frequency is rounded up to match the
available frequency. Unlike FFSA, our controller dynamically
sets the frequency to just what is needed while meeting the
target performance.

VI. CONCLUSION

This paper presented a formal approach to control the p-
states of the cores in a CMP system to achieve the target
performance while minimizing the power consumption. The
algorithm is implemented in Linux Kernel and tested on a
state of the art test bed, a 32nm Intel hexa-core dual socket
Westmere Xeon. Extensive measurements using Spec2K and
SpecWeb show that the algorithm delivers the target perfor-
mance successfully, it reduces the standard deviation from
target performance by more than 90% over state of the art
policies while reducing average power by 17%.

VII. A CKNOWLEDGEMENT

This work has been funded by NSF Project GreenLight
grant 0821155, NSF SHF grant 0916127, NSF ERC CIAN,
NSF Variability, NSF Flash Gorden, CNS, NSF IRNC, Trans-
light/Starlight, Intel, Oracle, Google, Microsoft, MuSyC.

REFERENCES

[1] http://www.intel.com/design/mobile/datashts/.
[2] Intel. energy-efficient performance for the data center,

http://www.intel.com/it/pdf/energy-efficient-perf-for-the-data-center.pdf.
[3] www.sun.com/servers/x64/x4270/.
[4] Intel unwraps dual-core xeon server processor. InPCWorld, 2005.
[5] R. Ayoub and T. Rosing. Cool and save: cooling aware dynamic

workload scheduling in multi-socket cpu systems. InASP-DAC, pages
891–896, 2010.

[6] S. Borkar. Low power design challenges for the decade (invited talk).
In ASP-DAC ’01, pages 293–296, 2001.

[7] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency
scaling based on workload decomposition. InISLPED, pages 174–179,
2004.

[8] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. InISLPED, pages 38–43, 2007.

[9] http://www.spec.org/cpu2000/.
[10] http://www.spec.org/web2005/.
[11] S. Lee and T. Sakurai. Run-time power control scheme using software

feedback loop for low-power real-time application. InASP-DAC, pages
381–386, 2000.

[12] B. Lin, A. Mallik, P. A. Dinda, G. Memik, and R. P. Dick. Power reduc-
tion through measurement and modeling of users and cpus: summary.
pages 363–364, 2007.

[13] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron.
Control-theoretic dynamic frequency and voltage scaling for multimedia
workloads. InCASES, pages 156–163, 2002.

[14] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. InEuroSys, pages
237–250, 2010.

[15] K. Ogata. Discrete-Time control Systems. Prentice-Hall, 1995.
[16] U. Ogras, R. Marculescu, and D. Marculescu. Variation-adaptive

feedback control for networks-on-chip with multiple clockdomains. In
DAC, pages 614–619, 2008.

[17] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task scheduling for
a variable voltage processor. InISSS, pages 24–28, 1999.

[18] V. Pallipadi and A. Starikovskiy. The ondemand governor: Past, present,
and future.Linux Symposium, 2:223–238, 2006.

[19] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling
using static timing analysis. InDAC, pages 438–443, 2001.

