OS-level Power Minimization Under Tight
Performance Constraints in General Purpose
Systems

Raid Ayoub’, Umit Ograd, Eugene Gorbatdy Yangin Jirf, Timothy Kam®, Paul Diefenbaughand Tajana Rosirg
*Department of Computer Science and Engineering
University of California at San Diego, La Jolla, CA 920930@4
{rayoub, y7jit@cs.ucsd.edu, tajana@ucsd.edu
TIntel Corporation, Hillsboro, OR 97124
{umit.y.ogras, eugene.gorbatov, timothy.kam, paul.tedleaugh @intel.com

Abstract—We propose a new DVFS algorithm for enterprise - specwel connections: 2000
systems that elevates performance as a first order control
parameter and manages frequency and voltage as a function of
performance requirements. We implement our algorithm on real
Intel Westmere platform in Linux and demonstrate its ability to
reduce the standard deviation from target performance by moe
than 90% over state of the art policies while reducing averag
power by 17%.

Index Terms—Power, Performance, DVFS, Operating system,
Multiprocessor.

LA A,
PRV RIANNLY
w Um ry VV

fio

Sliding window perf reduction(%)

Tziinue stamp (;;c)
Fig. 1. Performance reduction using ondemand

I. INTRODUCTION . "
Server performance remains a critical component of data

Scaling down in technology coupled with the increasingenter operations. Many server workloads are deployed with
demand of computationally intensive applications has ted ervice Level Agreements (SLAs) that capture workload
a wide use of multi-core CPUs in server systems. Multipleerformance requirements. Meeting these SLA requirements
CPU packages have been deployed in modern systemsansl providing certain level of performance guarantees lies
further increase computational capacity [3]. Howeverning in the heart of robust datacenter operation. The goal for
this computational infrastructure increases system paoer power management in future generation servers will be to
sumption. At the same time, high CPU power causes thernmibvide energy efficient performance rather than simplygne
hot spots which require cooling subsystems that can consueiéciency [2].
significant energy [5]. Therefore, operational power consd Figure 1 shows performance loss @fdemand governor, a
for system execution and cooling has become a big concestate of the art DVFS Linux policy [2], for a representative

In general, processor power can be broken down inperiod of executing a web server benchmark, SpecWeb2009
dynamic and static power where static component is aroufid], with 2000 sessions. Each point in the graph represents
20%-40% [6]. Dynamic power is a function of clock frequencyverage performance loss over a sliding window of 100ms. The
and voltage while static power is a function of the number @¢ésults clearly show that Linux DVFS policy cannot constrai
active components and temperature. In recent years, systggnformance loss. In addition, performance variationsnfro
designers have introduced CPU power management technicflieguency scaling are very high further destabilizing eyst
to improve energy efficiency and thermals. Dynamic voltagegperation and user experience. Note that this behaviormigt o
and frequency scaling (DVFS) has been a mainstay of serdg@teriorates workload quality of service (QoS) but may also
power management for several product generations now [Bf unacceptable for latency sensitive applications.

[4]. DVFS lowers processor dynamic power by scaling down A number of DVFS techniques have been proposed for real-
its voltage and frequency thus reducing power dissipation ime applications that have hard-performance constrglitl
both CPU and cooling subsystem. [19], [17]. A general idea behind this class of techniques is

DVFS control algorithms found in todays production systo pass application-level deadline information to the afiag
tems rely on heuristics that can inadvertently decreasersys system (OS) to guide its DVFS decisions. However, using real
performance while trying to minimize processor power coriime mechanisms to address DVFS performance issues for data
sumption. Both Linux and Windows, for example, implemerttenter workloads is problematic. First, most server apfitois
a DVFS policy that attempts to keep processor utilization and system software don’t have the necessary infrasteutdur
around 90%, progressively decreasing frequency whenéiver deadline based scheduling and power management. Second,
lization drops below this threshold and increasing whernvaboperformance guarantees found in enterprise SLAs aretstatis
[18]. Although this policy keeps system throughput constarcal leading to unnecessary over-provisioning, compleaityl
it may negatively impact latency sensitive applications. Iless energy savings inherent in hard-real time systems with
addition, and perhaps more importantly, it offers no strorggterministic guarantees.
performance guarantees. In fact, identifying periodsrduri This paper proposes a new DVFS mechanism that makes
which voltage and performance can be safely reduced is performance a first order control parameter. Rather than re-
active area of research [12]. quiring applications to specify deadlines, our approac¢ioin

User /Application

duces a new constraint, called performance target, exgess
as a fraction of maximum system performance (e.g. 95%),
as measured by the number of Instructions executed Per
Second (IPS). We design a new DVFS algorithm that con-
trols processor operating frequency and voltage basedisn th OSPM :
constraint while minimizing power and ensuring performanc ot l I A
stability. Similar to prior work, we address typical entésp
applications that require soft guarantees [13], [14]. Intcast
to prior work we provide performance guarantees using dlose Fig. 2. Overview of our DVFS management
loop control. . .
Tphe main benefit of our approach is in providing a moréurrent DVFS approaches. (4) We present detailed evatuatio
general solution for the soft performance guarantee problé@nd analysis conducted on a real system.
while ensuring stability and efficiency of DVFS. To this end, . DESIGN OVERVIEW
we design a formal closed loop controller that dynamically :
changes operating frequency and voltage to meet a desire@ur DVFS (-states) management is implemented at the
performance target. Our control framework is not limited toperating system level as a kernel module. Figure 2 describe
a single core; it is capable of managing multiple cores asir approach. Our framework in general allows the appli-
well as multiple CPU packages. To evaluate our techniggations to specify their respective performance targee Th
we implement new DVFS control algorithm in the Linuxtarget performance is expressed as a fraction of maximum
kernel and conduct detailed analysis on the latest geperatperformance (e.g. 95%), as measured in terms of IPS. The
server system. The results presented in the paper show thegr or the application set requests the target performemte
our approach has the ability to reduce the standard dewiatjgasses this information to the operating system power nenag
from target performance by more than 90% over state of t(@SPM) where the target set can be easily modified at any
art policies while reducing average power by 17%. point in time. Our solution is general which allows each core
Il. RELATED WORK to run at different performance target when there is a suppor
) o . for changing DVFS per core. We developed a performance
DVFS techniques can be broadly classified into multiplgoge| that is based on frequency scalability which allows
categories. The first class covers polices that mange powgrio determine the target frequency of the individual threa
dissipation without guaranteeing QoS [7], [8], [18]. Moder; accounts for the interference effect from other threads o
Linux_kernel usesondemand policy for managing DVFS e shared resources, e.g. off-core caches and memory. This
[18]. The ondemand algorithm periodically calculates #JC moge| is embedded within a state-space framework which
utilization. If the utilization is above a certain threstipthe odels a slack in the form of execution time to account for
ondemand set the frequency to the highest value. Alternativelyne |imitations in frequency setting and run time variaion
the next frequencyf,...., would be set to a value that equalsy scalability factor. Our state-space model also handies t
to current frequencyj.., multiply by the utilization,Uc., cases when a number of cores share a single DVFS due to
(fnext = feur * Ucur). The main problem with this policy is hardware restrictions. The limitation is that we can assign
that it cannot constraint performance to given bounds. maximum of one performance target to the cores that share
_ The second class of DVFS techniques are designed for reglsingle DVFS setting. In case the system supports multiple
time applications that have hard deadlines [11], [19], [1@] cpy sockets, then each socket can have different perfoenanc
[11], the authors use software feedback loop mechanism é?gets.
save energy. The deadline for each time slot is providedeo th This set of target performance is the input to our Multi-
OS. The OS calculates the frequency based on the curreRt slggy ;+ Multi-Out (MIMO) feedback control algorithm that
and the expected worst case execution time. The techniqu F@usts the frequency and voltage settings of the cores in
[11] uses static timing analysis to find the execution time of \ay that ensures the target performance level is satisfied.
the program segments. This static information is exposed e proposed controller estimates two parameters (pej core
the OS to determine the frequency of the execution at run ti\gm the platform using hardware performance counters. One
to meet the desired deadlines. In [17], the authors addhmssg a scalability factor and the other is instructions retire
issue of how to assign frequencies to a given set of tas&g,|apility factor determines the portion of the executiare
so they can meet their deadlines. Although these techniqygs; is scalable with frequency. The controller makes DVFS
are effective in meeting the desired performance in r@ati gecisions on a regular basis so that it can respond to run
applications, they are not so effective for soft deadlinge dijme changes in workload behavior. The controller sampling
to their over provisioning of the resources. eriod is in the order of tens of milliseconds. We show that
The third category of DVFS techniques concern the nqfg oyerhead of this technique is negligible since the tiote f

real-time applications that have soft performance com&a c,nigler's computation time and DVFS switching is in the
[14], [13]. In [13], the authors suggest technique for using,nge of microsgconds. J

DVFS to meet soft performance requirements for multimedia
applications. These techniques use feedback control tagean IV. DVES CONTROL METHODOLOGY
DVFS. However, they are applicable to particular applamadi
Our contribution can be summarized as: (1) We mai Performance model

performance SLAs first order parameter and allow software toln this section we develop the relations between OS level
specify its performance targets. (2) Rather than drivingeBV performance and clock frequency. When a thread is executing
to reduce power only we drive DVFS to meet performandbe thread is iractive state, and when it is waiting in the task
targets while minimizing power. (3) We show that our apgueue of the operating system it is iidle state. During the
proach is able to meet performance targets when compareddétive mode the thread can be either executing or stalliipwh

Performance target se

P-state
Control

Platform

waiting for some on-core or off-core resource. In generahay occur due to errors in scalability factor or requesting
the latency of on-core stalls scales with frequency whike thunavailable frequencies. The source of errors in scatabili
latency of off-core stalls does not. This indicates thatdtiive factor come from the fact that we need to rely on scalability
time, T,,.; period of time when the thread is in active state, calactor prediction for the next period (period betweerand

be broken into frequency scalable and unscalable segmehtsl). In this work, we assume that the next value of scalability
We define thescalability factor, Sy, as the ratio between factor equals to the current one that is already measured by

scalable timels qiqabie, tO active time as: performance counters. The frequency selection relatestserr
Sp = Tiscatabie (1) occur because only limited set of frequencies are exposed to
Tt the operating system. Such deviations can be modeled as a
time changes fronf (1) t0 Tuei(f2): is lower than the target) or negative (frequency is higher
Toet(f2) = Taot(f1) + Aty @) than the target). The interesting feature of the slack i$ tha

it is accumulative and can be modeled naturally in a state-
A, = SeToer(f)(2 — 1) 3 space form. Modeling the slack problem in state-space form
Taer = PFRactlU g is desirable since it allow us to use the robust formal method

. . in state-space control.
whereAr, , represents the change in scalable time due to P

the change in frequency. We do not consider the unscalable stk+1) = sk)+As

time since it does not change with frequency. _ Sr(k)Tact B
To measure performance we use the commonly used metric = s+ frep (k) (F(k) = fres (k)
which is the number of instructiongy;, executed per second = s(k) +y(k)u(k) (7)

IPS = TN—I This metric is applicable to single and multiple)
threads. Eor multiple threads it is equivalent to throughpu Where s(k) represents the slack accumulated urifith
The upper bound for the instructions execution rats,,,,, Period andA(k) is the slack for the period betwednand
can be determined by setting the clock frequency of theacti + 1, Which is computed using (3). The parametgr.;
cores to the highest. The objective is to run a given set of joffPresents the time duration of the active state for theogeri

at IPS that is fraction of the highest one as follows: etweenk andk + 1 andu(k) = f(k) — fres (k) . The value
of A4(k) can be either zero, positive or negative quantity. For
IPSres = BIPSmaz) example, the value ol (k) is zero if f(k) is set tofrcy.
where is performance fraction factor (0 to 1) addS, .. Now we extend our modeling to multiple cores where each

is the target IPS. The value dfis the target performance ratio.COre executes a job. This means that we need to have a control
It is provided by the user or application and can be easifyer the slack of the active cores. Let's first assume the reumb
changed (see Figure 2). The lower bound fois determined Of cores isN. We define the state of the slack with a vector
based on the minimum and maximum frequencies suppor@g?V states, at times, as: (k) = [s1(k), s2(k), ..., sn (k)]
by the CPU (nin, fmaz) and average value of scalability!" case there is a DVFS support per core, the state-space
factor Sg. The value of8,.;, equals tol + Sp(£2= —1). We formulation of S(k) can be written as:
use thel PS¢ in our approach as a reference input for the S(k+1) = S(k) + [L]vxn [U(K)] v C)
(Izljt\a/pFeSn é\ilrg];é)rgrr:r?ﬁg?;bgarlﬂﬁ g{n];SBer,; frireayCVS% Ié;tt i;\ugngtln;e The [1;]FNX N matrix isd a ?iagg?n?lt?a'ﬂx vlvhekre _me diagtjqnal

_ SIS ref —elementl’;; corresponds to/(k) of the :** slack. The matrix
rlitgenceT?leeC%?aell :;Baéggfﬁgvﬁrg I;X\?Il‘gplgllgtv(\?/ ttrr]‘: \\//z;illlljee (kk)] Nx1 IS]tghe control input where th&" entry represents
1PS,,.. Wwhen the cores execute at arbitrary clock frequenci §() = fresi (k).

To relate the targef PS of each task tol PS,,.,, we use Controllability of the state space model in (8)

Equation (3) and obtain: 1 Using the analysis given in [15], [16], one can show that the
IPSrc; = IPSmar——(—F— (5 system given in (8) is controllable under the condition veher
1+ SF (m -1 each core has its own DVFS. In practice, hardware restnistio
p@ay force multiple cores to share the same clock frequency,
an issue that makes the system more difficult to control. This
fmazSF means that we need to reduce the number of states in the
fres = 1 (Sr—1) ®) slack space to be equal to the number of controllable clock
& frequencies.

Finally, using (4) and (5), the target frequency can
computed as follows:

B. Sate-space dack model

Our performance model given in (3) shows that a slack ﬁ State space reduction
the form of execution timeAr, ., would occur if the clock In order to reduce the number of slack states while meeting
frequency is set to value that is different from the target.onthe required performance SLAs we utilize the superposition
The convergence of the performance to the target depemdgperty in the performance relation (4). Let's start firsthw
on the slack’s convergence to zero. Before we address ideting the general formulas for théPS,.., and IPS,q.
convergence problem we need to develop a model for tiaen there areV cores each is executing a task, that is:
slack. We start with a simple case where we have a single cd®S,.; = Zij\il IPSy ey, and IPSya0 = vazl IPShaq;
executing a single thread. ldeally, at the end of each cbntidext, we need to incorporate the slack variables in the perfo
interval, k, we need to calculate a new target frequerfcy;, mance model. To do so, we rewrite the performance equation
and then set the operating frequency to that value to méé} in terms ofabsolute number of instructions executed as
the desired QoS. However, deviation from the desired Qd&lows:

N section we focus on the design of the state-space conttoller
be used for adjusting the input frequency in away that udes al
;IPSM” (Tact + s1) = 5Z;IPS7”WTW) of the available slack while ensuring stability.
The right side of the equation counts the target number Df Sate-Space controller

committed instructions over the period of timg,.;. In ideal In thi . dd he desi f a feedback

case when all slack equal to zero, the right side of this éguiat,_ !N this section we address the design of a feedback con-

should equal tOZN IPS. . T .. We include the effect of troller fchat dynam|ca_\lly manages the controlla_lble freq:_Jm
~i=1 refi-act- U : to achieves the desired performance constraints. Thaarlat

slack, s;, by adding it to the execution peridhl,.; as shown

on the left side of the above equation. This means that(' 4) shows that the individual slack variablesg,, that belong

. : = t0 the set of cores which share the same clock frequency
the slack of a particular core is positive then we executeema

instructions than the case of zero slack and vice versa. \tege nggﬂtrt())?l e(:rodné;ci)llﬁ d{ﬁg%%eggﬁlr;tlg% t?\r(]e IcS(;Q'rL\Jt(raoH:earLtisS{gnplmees th
that no slack is included in the right side of the equatioein gn. J ey

1PS represents the case when all cores execute at H slack variable to zero. We achieve that by using the obntr
hi maz; EP . - which is the linear feedback of states under control. The
ighest clock frequency. Next, we need to find the condﬂu@
t

N

. struction slack equation given in (12) has the temvhich
that needs to hold for the slack values in order to meet € ot controllable by the input frequency. We resolve that

desired performance. To do so, we first rewrite this equati : : . g _
to separate the slack as follows: Wi‘rough simple algebraic manipulation as shown below:
3 S Aifi(k) — ©3 = —Gilisr, (k)

Z IPSres, Tact + Z $ilPSper, = 8 Z IPSmaz, Tace (10) o,

i=1 i=1 i=1 filk) = =Gisr (k) + += (15)

To meet the QoS condition, the second sum in the left side '
of this equationzzj.\’:1 siIPS,.5,, has to be equal to zero. To whereG; is the state feedback gain of th& slack and
generalize this, we can state that each subset of cgresthe f;(k) is the frequency setting that is required to meet our
CPU package that share a single clock frequency, mustysatisbjectives. Next, we need to find the value @Gf that will
the following condition in order to meet the target performo@ place the eigenvalue of the closed loop system within thée uni
SLAs: S S IPSyep, = 0 (11) circle to converge the slack to zero. To calculate the desire

e gain we need to obtain the characteristic equation of the

system which has to be irrdomain [15]. The characteristic

Using equation (11) and (7), the state-space formulation fequation of this system is: — 1 + A;G;| = 0. Using the
the instruction count slack for a subset of cores that shakgsaracteristic equation, we can calculate the feedback gai

a single clock frequency can be reduced to a single statea@sG, = 1[:2, wherel > 2~ > 0. The controller's transient

i€g

follows: time constant,r, is another important metric that needs to
si(k+1) = s1(k) +f(k)z)\i(k) - Z)\i(k’)frefi(k’) be calculated. The controller represents a simple firstrorde
i€g i€g system. Using first order system analysis, the transierg tim

= si(k)+ f(k)A—© (12) of the controller can be computed as= m<1:+c:) where

T is the controlling interval. The controller response speed
depends on the location of eigenvalue afid In general,

ilt?r%ks 't?] a?uswz:\)rirs %fam:tgggtlggngxe;#élz% IS t(?/e_(sk?t ff the response speed increases as the value of the eigenvalues
q y mand Ailk) = pecome closer to the origin of the unit circle or the value

Sr, (k)Tqct(k . . .
IPSrefi(/f)%- The value ofIPS,.s,(k) can be of T, is reduced. However, the changes in the input clock
computed as foﬁows: frequency are expected to increase with the reduction in the

[PS'r'efi (k}) — IPSZ(I{I) . (13) response time.

where f(k) is the input clock frequencys;(k) is the

1
+ Sr (555 = 1)
' Power reduction: The controller delivers power reduction
The value of f,.;, is computed using (6) which is de-when the value ofs < 1.0. This is because the controller
termined based oy, and the desiregs;. The formulation reduce the frequency to what is just needed to meet the desire
given in (12) shows that it is possible to merge the slagkerformance target. The controller ensure minimal freguen
states of a group of cores into a single state that is coattollsince it incorporates the scalability factor informationifs
by a single frequency (k). This indicates that it is possible performance model which allows it to reduce the frequency
to make the number of states in the slack vector equalkien the application scalability factor is below one, thus
to the number of controllable frequencies, hence the systeninimizing the power consumption. The power reduction
can be fully controllable. Let us define the state vector witfatio is normally higher than — 3 and it increases inversely
M states asS;(k) = [sr, (k), s, (k), ..., s1,, (k)]". The state- to the scalability factor.
space formulation ob;(k) can be written as:
Si(k+1) = Si(k) + [Almxm [F(k)mxi — [Blux: (14) Overhead The computational overhead at each controlling
tick involves calculating the new frequency using (15) and
where[F'(k)]ax1 is the vector of input clock frequencies,updating the slack states (12). These ordinary computation
[A]arxar is a diagonal matrix where the element; corre- can be done in no more than few microseconds. The overhead
sponds to the value of in the s;,. For the vectorB, the B; of DVFS switching is also in the range of microseconds [1].
element represents the value @fin the s;,. Since[A]arxm On the other hand, the period between consecutive comigolli
is a diagonal matrix, we can treat each state independentiiks is in the range of tens of milliseconds. This indicatest
an issue that simplifies the controller design. In the foitay the overhead of our controlling mechanism is negligible.

"
o
S

TABLE |
SPEC2K BENCHMARKS CHARACTERISTICS

©
S

@
S

[Benchmark]] TPC [Characteristics 20

Performance (%)

bzip2 1.30 CPU bound

perl 2.05 CPU bound 60 == Ondemand

gcc 1.38 CPU bound 50 W FFPA, target:90%

mcf 0.31 | Memory bound 1 FFPA, target:80%
equake 0.65 | Memory bound 40 EER Our policy, target:90% [
swim 0.57 | Memory bound 5 == Our policy, target:80%

cc
perl [mcf bzip2 perl+9cC perv*”“fpgnmnpz+equa"§pen+2mcz‘wp1+2ven+swm VG

A. Methodology V. EVALUATION Fig. 3. Performance SLAs with a single CPU socket

‘NIN'H
! ‘NINTR!
socket at any point in time. To accommodate this restrictio€ *

NIRINTH IR HE L
B ondemand, CPU 0,1 l
I FFPA, target:95%, CPU 0 H
: : 0 - ur parey orgetos%, coU o
we use our state-reduction method to get a single slack fi £ Our policy, target:a0%, CPU 1

an entire set of cores in the CPU socket. We implemente “nd | Comand ppendseet, emmyined aasecmhmeiapet s, pparsec i A
our state-space controller in latest Linux kernel (2.823% Fig. 4. Performance SLAs with dual CPU sockets

place of theondemand policy for managing the p-states. We . . .

use the CPU’s hardware performance counters to estimate ¢ggtroller is not limited to a particular value. The results
scalability factor and IPS. To measure these metrics we teeed!€arly show that our controller is capable of meeting the
determine the scalable time active time and number of etirdesired objectives. In general, controlling the p-statéenv
instructions. We use one counter for each of these metrlé$ining multiple threads is more challenging compared to
(e.g. unhalted core cycles counter for measuring the activeSingle thread execution because of interferences in the las

time. We use an eigenvalue of 0.1 for the controller gain so%‘” cache. However, our controller performs quite wetbas

We evaluate our approach using a state of the art te 1o
bed, a 32nm Intel hexa-core dual socket Westmere Xec o
with a total DRAM/DDR3 memory of 12GB. Our Wsetmere
processor supports 6 operating frequencies (1.6, 1.78871.
2.0, 2.133, 2.267 GHz). The hardware design of Westme| g
processor allows only a single frequency for all cores in &

nce (%)
3

can converge in about one scheduling tick or so. The samplifi§Se varied cases. For instance, the results obtainedhdor t

interval of our controller is set to 20ms. Please refer taisac case operl (cpu intensive) and2perl+2mef } (mef is memory

IV.D for discussion on the controller sensitivity to the wag intensive) are equally good even though the latter run has a
of eigenvalue and sampling interval. We use this setup afl bstantial increase in the number of last level cache ctfli
evaluate our controller by executing batch class (throughp! "€ results also show that our policy outperforms FFPA
critical) workloads. For a more comprehensive analysiswf 0SiNce FFPA cannot exploit the workload dynamics in terms
technique, we evaluate it by executing service class waddo ©f frequency scalings. For the case of default Linux policy,
(e.q. web servers). Running service class workloads reguiPndemand, the results show it is ineffective in controlling the
cluster of multiple physical machines. Owing the limitegp€rformance of this class of high utilization jobs as it wbul
availability of physical machines, we simulated our coligro Merely increase the frequency to maximum. To accurately
and used real-life traces from actual measurements in f@luate our technique we calculated the standard dewiatio
simulations. rom performance target using the results in Figure 3. The
We use representative benchmarks from the Spec2K sdfguction in average standard deviation over the FFPA and
for the batch class workloads (see Table 1)[9]. A set &@ndemand policies is as high as 72% and 91% respectively.
benchmarks with various levels of CPU intensity are setecte N Figure 4 we show that the capability of our controller to
to emulate real life applications. We run each benchmark fReet the target SLAs is not limited to a single CPU package.
the work set till its completion. For service class worklsadn this experiment we execute workload on the two CPU
we use SpecWeb benchmarks that are used commonly for vi@kets in the system (CPUO, CPU1), where the workload
server performance evaluation [10]. includes a mix of CPU and memory intensive applications.

We compare our technique against the defamifemand We set the performance targets of the workloads of the two
policy in Linux (described in section I1). However, for batc CPU sockets to be different, (95% and 80%). We use the
class of jobs with high utilization thendemnad would set hotation (:) to separate the workload of the two sockets.
the frequency merely to maximum, hence it cannot constraifte results show that our controller is able to meet the
performance to given bounds. We also evaluate our methg@fformance target in all cases and outperform both FFPA
against a performance aware policy that is suitable for higidondemand. Our controller is able to perform equally well
utilization jobs, Fixed Frequency Performance Aware, FFPAVhen there is a single thread is executing in each socket,
that sets the frequency, to a value that is based on the giver{bzip2:mcf }, as well as when there is multiple threads in
performance target ag, = 3fmq.. The frequency is rounded€ach one,{perl+bzip2+gcc:2mef }. We also calculated the
up to the closest value available to prevent performanfﬁductlon In average standard deviation over the FFPA and

violations. ondemand; it reaches, 80% and 92% respectively.
i We will now discuss the performance of our controller
B. Evaluation compared to thendemand policy in managing the p-states for

Figure 3 shows the robustness of our controller to mesgrvice class workloads (using SpecWeb traces). The sesult
the required SLAs performance. We run workloads on @& applyingondemand policy are shown in our earlier Figure
single CPU socket that span from CPU intensive to mert-where the performances are averaged over a sliding window
ory intensive with single as well as multiple threads. Wef 100ms. The results show that tleademand policy can
select representative performance targets to show that cause large variations in performance which can lead to

N

Our policy: specWeb connections: 2000 T . - =
EEm Basline, ondemand:85% EEE Basline, ondemand:90% HEE Basline, ondemand:94%

[0 Baseline, FFPA:85% [Basline, FFPA:90% [Basline, FFPA:94%

SN g WL

o

Sliding window perf reduction(%)
. 4
Power reduction (%)
= -
1
|
—
1
—
—
—
—

5 315

55 55 =5 s o | _
Time stamp (sec) 2met2mel quake2Pel ¢ ceimef+aSme WM pzip2:b2IP2 gecswiM - mefmel o qimamcd - AVG

Fig. 5. Running SpecWeb with our controller Fig. 7. CPU power reduction with our controller

85% since their target frequency is rounded up to match the
available frequency. Unlike FFSA, our controller dynartica
sets the frequency to just what is needed while meeting the

: target performance.
WWWMMW VI. CONCLUSION
4 |

coooo00k

IPS/IPS_max
Mobhino N

o
o
N
o
n
N
B
o
N
B
)
N
N
o
N
n

SF

NNN 000000OR
QOOYYO
WONBO®O,

B
N
N
i
N
N
o
N
i

This paper presented a formal approach to control the p-

5 zoal , WY] states of the cores in a CMP system to achieve the target
g 1osf ; V] performance while minimizing the power consumption. The
= 00 205 2o 7S 220 X algorithm is implemented in Linux Kernel and tested on a

Fig. 6. Controller behavior with executing bzip2 state of the art test bed, a 32nm Intel hexa-core dual socket
C N . Westmere Xeon. Extensive measurements using Spec2K and
performance violations. To compare it with our policy wesnecweh show that the algorithm delivers the target perfor-
use the performance hit from th@ndemand policy and set ohce successfully, it reduces the standard deviation from
lazl_corregpohnd|ngtr?e5|redltper;orma|\n_ce level fol_r ou_:_g:oreﬂr.olll arget performance by more than 90% over state of the art
igure 5 shows the results of applying our policy. The resulf i ; ; 0

show that the performance variation is reduced by 92% Whiéf?“mes while reducing average power by 17%.
is significant. VII. ACKNOWLEDGEMENT

Next we give results pertaining to the run time behavior This work has been funded by NSF Project GreenLight
of our controller. In these experiments, we set the desirggant 0821155 NSF SHF grant 0916127, NSF ERC CIAN,
performance to 90%. Figure 6 shows results of executi%g,: Variability, NSF Flash Gorden, CNS, NSF IRNC, Trans-
a single thread ofozip2 on Westmere processor. The toﬂi%ht/Starlight, Intel, Oracle, Google, Microsoft, MuSyC
portion of the graph shows how the ratio between curren
and the maximum IPS changes over time. The middle part REFERENCES
of the graph depicts the scalability factor while the bottonms) http:/mww.intel.com/design/mobile/datashts/.
portion illustrates the current and target frequenciese Thi2] Intel. energy-efficient ~ performance for the data center

results clearly show that the controller is able to meetahget o, hitp:/lwaww. intel.comiitipdfiencrgy. efficient-perftdhe-data-center. pdf.

performance in spite of large variations in scalabilityttaic [4] Intel unwraps dual-core xeon server processorP@Wbrld, 2005.
The bottom part shows that the frequency assignment ma$ R. Ayoub and T. Rosing. Cool and save: cooling aware dyoam

have some fluctuation between the two adjacent frequencies orkioad seheduling in multi-socket cpu systems. ASP-DAC, pages

(2GHz and 2-13GHZ_)- These fluctuations occur O_lue to the lagk) s. Borkar. Low power design challenges for the decadeitéd talk).
of enough frequencies to cover the range that is required by] In ASP-DAC '01, pages 293-296, 2001.

i ic limitati i [7] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and feagy
the controller. In spite of this limitation in the hardwamyt scaling based on workload decomposition |$hPED, pages 174179,

controller is able to meet the target performance. 2004.
The other important feature of our technique is its cap@bili [8] S. Herbert and D. Marculescu. Analysis of dynamic vaiifigquency

; ; ; ; scaling in chip-multiprocessors. ISLPED, pages 38-43, 2007.
to deliver CPU power reduction while ensuring performanc hitp: W, Spec. Org/epU2000.

guarantee. Figure 7 shows the power reduction comparifig] http:/mwww.spec.orgiweb2005/.
ondemand and FFPA and our technique for running workloagl1] S. Lee and T. Sakurai. Run-time power control schemagusbftware

on two sockets where both sockets have the same performance&2dhack loop for low-power real-time application. ASP-DAC, pages

target. We study the savings over various values of perfg{z] B. Lin, A Mallik, P. A. Dinda, G. Memik, and R. P. Dick. Rer reduc-

mance targets. The power reduction with using our controlle tion through measurement and modeling of users and cpusmagn

. . ; ; pages 363-364, 2007.
is the highest when compareddndemand policy sinceonde- &13] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadr

mand keeps the frequency at maximum. The power reducti Control-theoretic dynamic frequency and voltage scalorgriultimedia
is expected to increases with the reduction in performance] \&/orﬂoiﬁig IrACAEES plagesdISAG—éf;]S,ﬁZO%.h o-cloud)

i i i . atnujl, . ansal, an . arrarknan. -clouas: maging
target. Qur teCh_mque. also outperforms FFPA policy in mogﬁ performance interference effects for qos-aware cloudBuinSys, pages
cases. The savings in the case of performance target being 237-250, 2010.

94% come primarily from utilizing frequency scalability in[lS% LKJ %gata. Digcr%eﬂmle control %/steDnsMPrenltice-Hall, V19_95h{mp .

H 1 i i i . gras, . arculescu, an . arculescu. aria ve
the .appl|cat|on as ther? IS no roundmg up In the frequenE‘;ﬁ feedback control for networks-on-chip with multiple clodemains. In
setting of FFPA (rounding up frequency causes extra power paC, pages 614-619, 2008. ' '
dissipation). The savings for memory intensive workloagl e.[17] T. Okuma, T. Ishihara, and H. Yasuura. Real-time tadiedaling for

LM Qi i i i i a variable voltage processor. 1855 pages 24-28, 1999.
({SM mSNIm-I-me}) IS hlgher than the case of Cpu Intensiv 18] V. Pallipadi and A. Starikovskiy. The ondemand goverriRast, present,

ones _(e.g.{bzi p2:bzip2}) sinc_e memory in_tensive a_lpplication. and future. Linux Symposium, 2:223-238, 2006. ‘
exhibit lower frequency scaling. The savings against FRRA i[19] D. Shin, J. Kim, and S. Lee. Low-energy intra-task vgéisscheduling
crease further for the cases of performance targets of 9@ an Using static timing analysis. IDAC, pages 438-443, 2001.

