The Variability Expeditions:

Variability-Aware Software for Efficient
Computing With Nanoscale Devices.

Rajesh K. Gupta

Lara Dolecek, UCLA
Subhashish Mitra, Stanford
YY Zhou, UCSD

Tajana Rosing, UCSD
Alex Nicolau, UCI

Ranjit Jhala, UCSD

Sorin Lerner, UCSD
Rakesh Kumar, UIUC
Dennis Sylvester, UMich

<= UCSanDiego UCLA TSR UCIRVINE Biirinors

Nikil Dutt, UCI

Punit Gupta, UCLA
Mani Srivastava, UCLA
Lucas Wanner, UCLA
Steve Swanson, UCSD

To a software designer, all chips look alike

. Electrical Characteristics

. . . 13 TExAs . : 2 : S
To a hardware en gineer,a C hi p IS INSTRUMI e mon it g, T T e o LA
The ded power down seq; is:

delivered as per contract in a data-sheet. mmbem L DwNeoMUipwoy

2. Drop EVpp/SDVpp supplies.

5.5 Current Consumption

1 AM1705 ARM All of the below current consumption data is lab data measured on a single device using an evaluation
board. Table 8 shows the typical current consumption in low-power modes at various . frequencies.
1.1 Features Current measurements are taken after executing a STOP instruction.
« Highlights Table 8. Current Consumption in Low-Power Mode2
— 375/456-MHz A VoKsge Typical® (mA) Peak® (mA)
— ARMS Memory Mode V)
44 MHz | 56 MHz | 64 MHz | 72 MHz | 83.33 MHz | 83.33 MHz
— Programmable
5 33 133
— Enhanced Dire Stop Mode 3
3 (EDMA3) (Stop 11)° 25 15.19
- Two External 15 0,519
— Three Configur 33 183
Stop Mode 2
Modules (sop10f | 25 15.19
— Two Serial Peri 15 125
— Multimedia Car 33 183
Stop Mode 1
Card Interface R 25 15.23
— Two Master/Sle 15 824 1022 955 1061 121 121
- USB 20 OTGF 33 223 233 241 25 261 261
— Two Multichan SipMada] Ty 162 16.47 16.62 16.91 17.24 17.24
. ; (stop 00)
- 10/100 Mb/s Etl 5 832 1032 566 10.73 1225 1225
— One 64-Bit Ger 33 223 233 241 2.5 26 407
- One 64-bit Gen WaitDoze | 25 162 16.48 1662 1691 1724 1877
— Three Enhance 3 FEES) 1438 1429 [y 1821 3545
43
. ___4
76
Electrical Characteristics w
5.8.1 SDR SDRAM AC Timing Characteristics redat
The following timing numbers indicate when data will be latched or driven onto the external bus, relative -power
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read g
cycles. The SDRAM controller is a DDR controller with an SDR mode. Because it is designed to support
DDR, a DQS pulse must remain supplied to the device for each data beat of an SDR read. The ColdFire
processor accomplishes this by asserting a signal called SD_SDR_DQS during read cycles. Take care
during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS c
signal and its usage. '
Table 12. SDR Timing Specifications
Symbol Characteristic Symbol Min Max Unit | Notes 2
Frequency of Operation 60 83.33 MHz g)
SD1 |Clock Peried (tck) tspck 12 16.67 ns z (FC
SD3 | Pulse Width High (toxs) fanciai 0.45 055 SD_CLK| 2
SD4 |Pulse Width Low (tcx,) tspekL 0.45 055 SD_CLK| 3 1SB0)
SD5 |Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, | tspcracy == 05xSD_CLK | ns
SD_BA, SD_CSJ[1:0] - Output Valid (tcpy) +10
SD6 |Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, tsDcHACH 2.0 - ns
SD_BA, SD_CS[1:0] - Output Hold (tcpg) B
SD7 |SD_SDR_DQS Output Valid (toasoy) toasov - Self timed ns K
SD8 |SD_DQS[3:2) input setup relative to SD_CLK (tpass)| toavspc | 0-25 x SD_CLK [0.40 x SD_CLK | ns 5
SD9 |SD_DQS[3:2] input hold relative to SD_CLK (tpasin) | tbaisocH | Does not apply. 0.5 SD_CLK fixed width. U orporated
SD10 | Data (D[31:0)) Input Setup relative to SD_CLK tovsocn | 025 x SD_CLK p— ns 7
(reference only) (tp)s) ~
SD11 |Data Input Hold relative to SD_CLK (reference only) | tpispey 1.0 - ns ra
(tom)
SD12 |Data (D[31:0)) and Data Mask(SD_DQM(3:0]) Output | tspcromy - 0.75xSD_CLK| ns
| | Valid (t~) +05

From Chiseled Objects to Molecular Assembliesv

Courtesy A. Asenov T
B Y Univ. of Glasgow nominal
scaling . .
®
= %\‘
©
£
The paradigm]
simulation yesterday E
o L\ ST ——
At 32nm (physical \
gate length) ‘ .
MOSFET in overdesigned
production today At 9nm MOSFET in scaling
production by 2023
; ! 1 '
ardband 65nm 45nm 32nm 22nm post-silicc
actual circuit delay gu A Technology Generation
<€ >
clock k
Aging Temperature .. V¢ Droop Across-wafer Frequency
120 | 1t ; ==
. ol Vo [===alma] i
= 115 3 CACICIC I 1
8 V\f 4 e e o
> 110 sl =] |==|mi==lm
1.05 | ot | |m] [=mjem{Em
[7 I 1
1.00 : o 1B 0]
0 10 20 30 40 50 7 SEEI-D-EI: 3
_ of NI LI
Time (ns) 1} | == |
20-Mav-123 Abbac Rahimi/ LIC San Dieco 2t CEIE A I I 2

What if?

Application g4 Application

Op zrating System

Hardware Abstracti £r (HAL)
. JY\ L., _rrr&r Fyxr]| |

underdesigned
hardware

(1 BLILY T 1

Time or part

New Hardware-Software Interface..

Application o9 Application

Opportunistic
Software
minimal variability
handling in hardware :
J Underdesigned
Hardware
>

Time or part

Builds upon a 50-year rich research in fault tolerance. 5

UNO Computing Machines Seek
Opportunities based on Sensing Results

Do
Nothing

Change
Hardware
Operating

Point

Change
Program
Parameters

Change
Runtime
Parameters

Change
Algorithms

4

Metadata Mechanisms: Reflection, IW

Models

Sensors

Building Machines that leverage move from
Crash & Recover to Sense & Adapt

Machines that consist of parts with variations in
performance, power and reliability

4

Applications & Algorithms]]) o
[UCLA, UCSD] Machines that incorporate sensing circuits
TN Machines w/ interfaces to change ongoing

computation & structures

Adaptive Runtime) -
[UCLA, UCSD] New machine models: QOS or Relaxed Reliability

p parts

Compiler & Low-level SW
[UCI, UCSD, UIUC]

Parametric
Deep puP Design Sensing HW Underde51gn
Expertise Signatures
[Michigan] [Stanford, UCLA] Errored ‘ Errorfree
<€ - _41— s =
Operation Operation

SW
Underdesigned Hardware Functional
[UCLA, UIUC, Stanford] Under(lesign

HW

Example: Procedure Hopping in Clustered
CPU, Each core with its voltage domam

Statically characterize procedure ~Inter
for PLV

A core increases voltage if
monitored delay is high

A procedure hops from one core
to another if its voltage variation
is high

Less 1% cycle overhead in
EEMBC.

826 | 855 | 877 | 893 1370 3701 855 | 877 | 893

|_I-————
L B | (T
820 | 826 | 909 | 847 1370 | 1370 I_ 1370 1 909 | 847

f1q fis 8
847 | 901 |

HW/SW Collaborative Architecture to Support
Intra-cluster Procedure Hopping

CalleeCore, 4 Caller Core,

* The code is easily accessible via the shared-L1 /S.

 The data and parameters are passed through the shared stack in
TCDM.

* A procedure hopping information table (PHIT) keeps the status
for a migrated procedure.

ViPZonE: Exploiting Memory Power Var

e

q q >
Application Layer 3
Source code annotations o 5
2
-

——

Upper OS Layer
Special GLIBC library, kernel system calls
— O
(0)]
Lower OS Layer
DIMM power variability-aware zoning and allocation _
T
DIMM M c !

Power emory ontroller -
Profiles)
— O
s
)
(0]

—

[Power] Applications
* App developers can Optimize |W Microarchitecture and Compilers
dynamic allocations for reduced [__Errors Runtime
ower B
* Linux + Glibc implementation : g § 1 ‘ rorege | Beesteren
<|E[£]fS

Energy Source Network
(Batteries)

Example: UnO Stack for Duty-cycled Sensors

Application

Baseli

- Samp Forwa
le rd

task

Reflection

Introspection

Reflection

nsing Manager

Activation
Sampling Configuration
Sampling Request

Asyncljronous notification

Sample, Event,
Time -series

OS

(

module SenseAndForward {
provides energylevel LowFid<1>;
provides energylevel MidFid<2>;
provides energylevel HiFid<3>; }
{ On_event Timer

call SensorRead();

On_event LowFid

call Timer(2500);

On_event MidFid

call Timer(2000);

On_event HiFid

call Timer(1650);}

\.

(

module SenseAndForward {
provides energylevel LowFid<1>;
provides energylevel MidFid<2>;
provides energylevel HiFid<3>; }
{ On_event Timer

call SensorRead();

On_event MonitorTimer

call SysinfoRead(&sysinfo);

If Error > Delta

call Time(DownSample);

}
\.

(

module SenseAndForward {
provides energylevel LowFid<1>;
provides energylevel MidFid<2>;
provides energylevel HiFid<3>; }
{ On_event SysinfoChanged

call SysinfoRead;

if Error > Delta

call Timer(DownSample);}

GRAND CHALLENGE, QUESTIONS
AND RESEARCH PROGRESS

Expedition Grand Challenge & Questions

“Can microelectronic variability be controlled and
utilized in building better computer systems?”

I.D. Overview of Expedition’s Plan

Our Expedition plan has three goals: (a) to address the fundamental technical challenges in the
realization of the UnO computing machines; (b) to create experimental systems at different scales to
evaluate the idea in real-life application contexts; and, (c) to leverage the educational and other broader
impact opportunities offered by such a rethinking of traditional computing machines.

Address fundamental technical
challenges

Create experimental systems

Educational and broader
impact opportunities to make
an impact

In
1.

ursuit of these goals, our objectives include addressing the following interlinked questions:

What are most effective ways to detect variability?

sensors embedded in the circuit and software instrumentation, which poses the challenge of
minimizing area, time, and energy costs.

What are software-visible manifestations?

the trade-off between quality and overhead of information exchanged from hardware to software
(termed “hardware signatures”).

What are software mechanisms to exploit variability?

explicitly provide alternative algorithms optimized for different hardware manifestations but which
share as much code as possible to improve code density, debuggability, etc. Alternatively, compilers
may automatically generate different code configurations, perhaps even dynamically at run time
without algorithm intervention. In either case, some level of run-time assist from the OS will be
needed.

How can designers and tools leverage adaptation?

about the application behavior (such as the quality metrics and the reaction to variable performance
and error rate) to be passed down to the design flow, as well as effective design automation
algorithms for incorporating this information as soft constraints during synthesis, placement, routing
etc. This operation may need to be done at run-time in the case of hardware platforms that expose
circuit-level “knobs” such as sleep modes, voltage scaling, and frequency scaling, or are implemented
on in-field reconfigurable devices, e.g., soft processor cores on FPGAs.

How do we verify and test hw-sw interfaces?

One might allow under-verification of hardware by ensuring the correctness of the overall behavior o
an opportunistic application and its associated software stack rather than that of the hardware alone.

Research Organization

e Four thrust areas

Measurement and Modeling

No=

Design Tools and Testing Methodologies
3. Microarchitecture and Compilers
4. Runtime Support

 Two Cross-cutting thrusts
5. Applications and Testbeds

6. Outreach and Education

14

Group A: Signature

Detection and
Generation

Group B: Variability

Mitigation
Measures

Thrusts traverse institutions on testbed
vehicles seeding various projects

Group C:
Opportunistic
Software and
Abstractions

Characterizing variability in power
consumption for modern computing
platforms, and implications

™

Mitigating variability in solid-state
storage devices

Effective error resilience

Runtime support and software
adaptation for variable hardware

Hardware solutions to better
understand and exploit variability

Negative bias temperature instability
and electromigration

N

Probabilistic analysis of faulty
hardware

VarEmu emulation-based testbed for
variability-aware software

Memory-variability aware runtime
systems

Understanding and exploiting
variability in flash memory devices

Variability-aware opportunistic
system software stack

Design-dependent ring oscillator and
software testbed

=

FPGA-based variability simulator

Application robustification for
stochastic processors

Executing programs under relaxed
semantics

Two years of building an Expedition

e Kickoff, review, tape-outs and builds-ins
— 82 peer-reviewed publications, 21% collaborative
— 54 events/releases on variability.org/news
— 64 presentations on variability.org/presentations

* A collaborative community
— 15 faculty, 25 GSRs, 1 postdoc, 10+ UG, 300 K-8-12

- NSFannounces Expeditions i Kickoff/AHM Summit@EPFL | DFM&Y [Industry Advisory - Y1Review -

8/19 11/19-20 3/18 6/10 10/6
st Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct |

3/26

Aging Simulator Released (UCLA/UIUC) el 5/23 LACC 8 Teaching Modules (UCLA)
Girls"Hat Day | Sensorized ARM Chips
Intel, Google, Oracle, Cisco (UCSD), STmicro (Michigan) Wafer Pruning from UCLA (EEtimes) 16

Timeline in Progress

| YL Review | IMEC/ESWeek Research Review (UCSD) Industry Advisory (Stanford) - Y2 Review

mess| Oct_| Nov_| Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | >

Complete Eval Boards w/ S-ARM 28nm Test Chips LACC | COsMOs Teaching Modules (UCLA)
CUDA Simulator Girls” Hat Day S-ARM R2 Tapeout

Samsung (Tapeout Measurements) ARM, TSMC (Benchmarking)

17

Research: From Measurements to Signatures Yo/

* Year 1 was mostly focused on characterization of
variability (IC designer centric)
— What is the extent of variation and can it be sensed? Can it
be used in the HW/SW stack?
* Year 2 focused on proof-of-concept methods to use
variability information (Programmer centric)
— From observation to systematic control.
— Can we construct useful signatures that can enable
systematic observability (and controllability) of variation?
* Year 3 sees the two streams coming together:
expanding collaborations across teams, emerging
testbeds & tools. 18

Important Takeaways \¢ /

To ensure effective use by software, we need accurate

1. Variability imposes a limit on how accurate the

models can get to

— Mean error ~20% + 12% due to variability for 34% overall
error in Nehalem 45nm CPUs

— 15-20% variation across 22 DIMMs
— 20-24% read, 40-67% write variation in Flash
— Rooted in inherent non-observability of power states.

19

Important Takeaways (continued) \¢ /

2. Instrumentation and sensing is necessary to ensure
‘high-level” observability of variation
— “High enough for semantic value.” Averages may not be
sufficient.
3. Sensing for delay, power, aging and degradation is
feasible and indeed necessary

— Important difference between failure prediction and error
detection. Notion of static & dynamic variability
management.

4. Variability can be leveraged in software

— media applications, duty cycle, security sensitive
applications. Notion of ‘tunable error’ and its observability
20
criteria.

Important Takeaways (continued)

complete end-to-end |n|t|al e
realization of an embedded system

™ nlatform with sensing chip, board-
level feedback, OS supporting duty- g
cycled tasks driven by variability,

iy and API for such machines.

— media applications, duty cycle, security sensitive
applications. Notion of ‘tunable error’ and its observablllty
criteria.

Expedition Experimental Platforms & v
Artifacts

Interesting and unique challenges in building
research testbeds that drive our explorations

— Mocks up don’t go far since variability is at the
heart of microelectronic scaling. Need platforms
that capture scaling and integration aspects.

e Testbeds to observe (Molecule, GreenlLight,
I\/Img) control (Oven ERSA) Molecule |

Red Cooper ERSA@ BEE3

Red Cooper Testbed: in-situ visibility Y

e Customized chip with processor + speed/leakage sensors
available since April 2011

* Testbed board to finish the sensor feedback loop on board

800 MHz M3, 50
packaged parts or
working boards
available since
August 2011. ARN
Cooper board
available since
August 2012.

Current
Sensors

JTAG

16K F pLL
SRAM DDRO

[Power] Applications
Microarchitecture and Compilers
l SUEers Runtime l

7

el gl = CPU Mem Storage Accelerators
ARM Leakage . | £ E § B)
Cortex-M3 et Amplifier 2IEll e S >
<l||a] = Energy Source Network

(Batteries)

Ferrari Chip: Closing Loop On-Chip \¢ /

GPIO ur =
GPIO &
AMBA
JTAG ARM Bus e 13 AR‘M—— - —
Cortex-M3 Timers i Cf)rtex |
Available
Confie April 2013
64 kB IMEM | E
I Counters |-S€ns
Out
176 kB DMEM H €
| | |
PLL RO CLK 19 8 banks of sensors
DDROs (N/P Leak, Temp, Oxide)

* On-Chip Sensors

— Memory mapped i/o and control

— Leakage sensors, DDROs, (Fower) A
temperature SEeNsors, rellablllty Microarchitecture and Compilers

Sensors I Errors l Runtime l

e Better support for OS and M
software.

7

Mem

CPU Storage Accelerators

.

Aging
Ambient
Process
Vendor

Energy Source Network
(Batteries)

From Control to Software Abstractions Y

Going forward
e Leon3 (Sparc) sensorized chip tapeout

e Software abstractions: PL and Runtime
— A formal/consistent way of exposing hardware signatures
— A full Linux software stack working

e Verification methods

— Performance & power invariants at RT-level in the presence of
variability (with TI) using probabilistic model checking

e Similar to property checking against Monte Carlo simulations

— Automatic generation of invariants and assertion synthesis.

25

Reaching out and building a
community

Building our teams across 6 six sites
Building our mentors and champions
Creating early adopters
Inspiring talent

Emerging Synergies

UCSD UCLA - UIUC

Red Cooper X X
Molecule X
X

VarEMU X X
Ferrari X

Software Systems LL Code LL Code Chips Sensors

 Examples of collaborative discovery
— Lara Dolecek working with Steve Swanson & Mitra
— Dennis Sylvester at the center of chip/platform characterization
— Nik Dutt, Alex Nicolau and Rakesh Kumar on code scheduling

— Rakesh Kumar, Sorin Lerner, Ranjit Jhala on code analysis and
programming language support for variability. .

Thank Youl!

