

Robust Systems for Scaled CMOS and Beyond

Subhasish Mitra

Robust Systems Group Department of EE & Department of CS Stanford University

Acknowledgment: Students & Collaborators

Robust System Design

Perform correctly despite complexity & disturbances

- Complexity: detect & fix design bugs
- CMOS reliability limits: tolerate errors
- Beyond silicon-CMOS: imperfection-immune logic

What's New ?

• Existing approaches: inadequate, expensive

	Traditional Thinking	New approach
Design bugs	Pre-silicon	Post-silicon
Reliability failures	Avoid	Tolerate at <u>low cost</u>
Beyond silicon-CMOS	Material processing	Imperfection-immune design

Outline

- Introduction
- CMOS reliability limits: tolerate errors
- Beyond silicon-CMOS: imperfection-immune logic
- Conclusion

Technology Reliability Challenges

- System soft error rates increasing
 - Fatal <u>flip-flop</u> errors

Comb. logic Flipflop Soft error rates

Early-life failures (ELF)
Burn-in: difficult, expensive

- Circuit aging & variations
- Worst-case guardbands expensive

Low-Cost Resilience

Software-orchestrated global optimization a MUST

BISER: Built-In Soft Error Resilience

45nm: up to 1,000X fewer errors vs. D-flip-flop

Single Error Assumption Inadequate

Single event multiple upsets increasing

2,000X fewer errors vs. D-flip-flop

Low-Cost Resilience

Software-orchestrated global optimization a MUST

New Gate-Oxide ELF Signature

- Delay fluctuations over time
 - Before functional failure

Demonstrated: 45, 32nm
28, 22, 15nm in progress

- Enables
 - On-line failure prediction

On-line Failure Prediction

Failure Prediction	Error Detection
Before errors appear	After errors appear
+ No corruption	 Corrupt data & states
+ Low cost	– High cost
+ Self-diagnostics	 Limited diagnostics

How ?

On-line self-test and diagnostics

Outline

- Introduction
- CMOS reliability limits: tolerate errors
- Beyond silicon-CMOS: imperfection-immune logic
- Conclusion

Carbon Nanotube FET (CNFET)

Carbon Nanotube (CNT) Diameter (D) : 0.5 - 3 nm

S. Iijima

Ideal CNFET Inverter

CNFETs: BIG Promise, BUT

- Major barriers for a decade
 - Mis-positioned CNTs
 - Metallic CNTs
- Processing alone inadequate

Imperfection-immune design essential

Mis-positioned CNTs: Incorrect Logic

1. Grow CNTs

- 1. Grow CNTs
- 2. Extended gate & contacts

- 1. Grow CNTs
- 2. Extended gate & contacts
- 3. Etch gate & CNTs
- 4. Dope P & N regions

- 1. Grow CNTs
- 2. Extended gate & contacts
- 3. Etch gate & CNTs
- 4. Dope P & N regions

- 1. Grow CNTs
- 2. Extended gate & contacts
- 3. Etch gate & CNTs
- 4. Dope P & N regions
- Graph algorithms
 - All possible functions
- VLSI
 - Processing & design

VMR: VLSI Metallic CNT Removal

- Metallic-CNT-immune design
 - © Sufficient: all possible logic designs
 - VLSI processing & design

First Wafer-Scale Aligned CNT Growth

Quartz wafer with catalyst

Quartz wafer 99.5% CNTs aligned

Before transfer Quartz substrate

After transfer SiO_2/Si substrate

First Experimental Demonstrations

Imperfection-immune circuits Arithmetic & storage

VLSI Integration Wafer-scale & monolithic 3D

Multi-layer CNFET circuits

Adder sum

D-latch

CNFET Variations Significant

Outline

- Introduction
- CMOS reliability limits: tolerate errors
- Beyond silicon-CMOS: imperfection-immune logic
- Conclusion

Thanks to my Research Group

Thanks to our Sponsors

Photo credits: Burn-in & test socket workshop, H. Dai, NEC, opensparc.net, Stanford

Concluding Remarks

- Derive failure signatures
- Utilize failure signatures
- Validate failure signatures

Enable

Nanotechnology Revolutions

8

A TRULY Better Tomorrow